{-
This file document and export the main primitives of Cubical Agda. It
also defines some basic derived operations (composition and filling).
-}
{-# OPTIONS --cubical --safe #-}
module Cubical.Core.Primitives where
open import Agda.Builtin.Cubical.Path public
open import Agda.Builtin.Cubical.Sub public
renaming ( inc to inS
; primSubOut to outS
)
open import Agda.Primitive.Cubical public
renaming ( primIMin to _∧_ -- I → I → I
; primIMax to _∨_ -- I → I → I
; primINeg to ~_ -- I → I
; isOneEmpty to empty
; primComp to compCCHM -- This should not be used
; primHComp to hcomp
; primTransp to transp
; itIsOne to 1=1 )
open import Agda.Primitive public
using ( Level )
renaming ( lzero to ℓ-zero
; lsuc to ℓ-suc
; _⊔_ to ℓ-max )
open import Agda.Builtin.Sigma public
-- This file document the Cubical Agda primitives. The primitives
-- themselves are bound by the Agda files imported above.
-- * The Interval
-- I : Setω
-- Endpoints, Connections, Reversal
-- i0 i1 : I
-- _∧_ _∨_ : I → I → I
-- ~_ : I → I
-- * Dependent path type. (Path over Path)
-- Introduced with lambda abstraction and eliminated with application,
-- just like function types.
-- PathP : ∀ {ℓ} (A : I → Set ℓ) → A i0 → A i1 → Set ℓ
infix 4 _[_≡_]
_[_≡_] : ∀ {ℓ} (A : I → Set ℓ) → A i0 → A i1 → Set ℓ
_[_≡_] = PathP
-- Non dependent path types
Path : ∀ {ℓ} (A : Set ℓ) → A → A → Set ℓ
Path A a b = PathP (λ _ → A) a b
-- PathP (λ i → A) x y gets printed as x ≡ y when A does not mention i.
-- _≡_ : ∀ {ℓ} {A : Set ℓ} → A → A → Set ℓ
-- _≡_ {A = A} = PathP (λ _ → A)
-- * @IsOne r@ represents the constraint "r = i1".
-- Often we will use "φ" for elements of I, when we intend to use them
-- with IsOne (or Partial[P]).
-- IsOne : I → Setω
-- i1 is indeed equal to i1.
-- 1=1 : IsOne i1
-- * Types of partial elements, and their dependent version.
-- "Partial φ A" is a special version of "IsOne φ → A" with a more
-- extensional judgmental equality.
-- "PartialP φ A" allows "A" to be defined only on "φ".
-- Partial : ∀ {ℓ} → I → Set ℓ → Setω
-- PartialP : ∀ {ℓ} → (φ : I) → Partial φ (Set ℓ) → Setω
-- Partial elements are introduced by pattern matching with (r = i0)
-- or (r = i1) constraints, like so:
private
sys : ∀ i → Partial (i ∨ ~ i) Set₁
sys i (i = i0) = Set
sys i (i = i1) = Set → Set
-- It also works with pattern matching lambdas:
-- http://wiki.portal.chalmers.se/agda/pmwiki.php?n=ReferenceManual.PatternMatchingLambdas
sys' : ∀ i → Partial (i ∨ ~ i) Set₁
sys' i = λ { (i = i0) → Set
; (i = i1) → Set → Set
}
-- When the cases overlap they must agree.
sys2 : ∀ i j → Partial (i ∨ (i ∧ j)) Set₁
sys2 i j = λ { (i = i1) → Set
; (i = i1) (j = i1) → Set
}
-- (i0 = i1) is actually absurd.
sys3 : Partial i0 Set₁
sys3 = λ { () }
-- * There are cubical subtypes as in CCHM. Note that these are not
-- fibrant (hence in Setω):
_[_↦_] : ∀ {ℓ} (A : Set ℓ) (φ : I) (u : Partial φ A) → Agda.Primitive.Setω
A [ φ ↦ u ] = Sub A φ u
infix 4 _[_↦_]
-- Any element u : A can be seen as an element of A [ φ ↦ u ] which
-- agrees with u on φ:
-- inS : ∀ {ℓ} {A : Set ℓ} {φ} (u : A) → A [ φ ↦ (λ _ → u) ]
-- One can also forget that an element agrees with u on φ:
-- outS : ∀ {ℓ} {A : Set ℓ} {φ : I} {u : Partial φ A} → A [ φ ↦ u ] → A
-- * Composition operation according to [CCHM 18].
-- When calling "comp A φ u a" Agda makes sure that "a" agrees with "u i0" on "φ".
-- compCCHM : ∀ {ℓ} (A : (i : I) → Set ℓ) (φ : I) (u : ∀ i → Partial φ (A i)) (a : A i0) → A i1
-- Note: this is not recommended to use, instead use the CHM
-- primitives! The reason is that these work with HITs and produce
-- fewer empty systems.
-- * Generalized transport and homogeneous composition [CHM 18].
-- When calling "transp A φ a" Agda makes sure that "A" is constant on "φ".
-- transp : ∀ {ℓ} (A : I → Set ℓ) (φ : I) (a : A i0) → A i1
-- When calling "hcomp A φ u a" Agda makes sure that "a" agrees with "u i0" on "φ".
-- hcomp : ∀ {ℓ} {A : Set ℓ} {φ : I} (u : I → Partial φ A) (a : A) → A
private
variable
ℓ : Level
ℓ′ : I → Level
-- Homogeneous filling
hfill : {A : Set ℓ}
{φ : I}
(u : ∀ i → Partial φ A)
(u0 : A [ φ ↦ u i0 ])
-----------------------
(i : I) → A
hfill {φ = φ} u u0 i =
hcomp (λ j → λ { (φ = i1) → u (i ∧ j) 1=1
; (i = i0) → outS u0 })
(outS u0)
-- Heterogeneous composition defined as in CHM
comp : (A : ∀ i → Set (ℓ′ i))
{φ : I}
(u : ∀ i → Partial φ (A i))
(u0 : A i0 [ φ ↦ u i0 ])
→ ---------------------------
A i1
comp A {φ = φ} u u0 =
hcomp (λ i → λ { (φ = i1) → transp (λ j → A (i ∨ j)) i (u _ 1=1) })
(transp A i0 (outS u0))
-- Heterogeneous filling defined using comp
fill : (A : ∀ i → Set (ℓ′ i))
{φ : I}
(u : ∀ i → Partial φ (A i))
(u0 : A i0 [ φ ↦ u i0 ])
---------------------------
(i : I) → A i
fill A {φ = φ} u u0 i =
comp (λ j → A (i ∧ j))
(λ j → λ { (φ = i1) → u (i ∧ j) 1=1
; (i = i0) → outS u0 })
(inS {φ = φ ∨ (~ i)} (outS {φ = φ} u0))
-- Direct definition of transport filler, note that we have to
-- explicitly tell Agda that the type is constant (like in CHM)
transpFill : {A : Set ℓ}
(φ : I)
(A : (i : I) → Set ℓ [ φ ↦ (λ _ → A) ])
(u0 : outS (A i0))
→ --------------------------------------
PathP (λ i → outS (A i)) u0 (transp (λ i → outS (A i)) φ u0)
transpFill φ A u0 i = transp (λ j → outS (A (i ∧ j))) (~ i ∨ φ) u0
-- Σ-types
infix 2 Σ-syntax
Σ-syntax : ∀ {ℓ ℓ'} (A : Set ℓ) (B : A → Set ℓ') → Set (ℓ-max ℓ ℓ')
Σ-syntax = Σ
syntax Σ-syntax A (λ x → B) = Σ[ x ∈ A ] B