{-# OPTIONS --cubical --safe #-}
module Cubical.Foundations.FunExtEquiv where
open import Cubical.Core.Everything
open import Cubical.Foundations.Prelude
open import Cubical.Foundations.Equiv
open import Cubical.Foundations.Univalence
module _ {ℓ ℓ'} {A : Set ℓ} {B : A → Set ℓ'} {f g : (x : A) → B x} where
private
appl : f ≡ g → ∀ x → f x ≡ g x
appl eq x i = eq i x
fib : (p : f ≡ g) → fiber (funExt {B = B}) p
fib p = (appl p , refl)
funExt-fiber-isContr
: (p : f ≡ g)
→ (fi : fiber (funExt {B = B}) p)
→ fib p ≡ fi
funExt-fiber-isContr p (h , eq) i = (appl (eq (~ i)) , λ j → eq (~ i ∨ j))
funExt-isEquiv : isEquiv (funExt {B = B})
equiv-proof funExt-isEquiv p = (fib p , funExt-fiber-isContr p)
funExtEquiv : (∀ x → f x ≡ g x) ≃ (f ≡ g)
funExtEquiv = (funExt {B = B} , funExt-isEquiv)
funExtPath : (∀ x → f x ≡ g x) ≡ (f ≡ g)
funExtPath = ua funExtEquiv