{-# OPTIONS --cubical --safe #-} module Relation.Nullary.Decidable where open import Level open import Data.Bool open import Data.Empty open import Function.Biconditional Reflects : Type a → Bool → Type a Reflects A = bool′ (¬ A) A record Dec {a} (A : Type a) : Type a where constructor _because_ field does : Bool why : Reflects A does open Dec public pattern yes p = true because p pattern no ¬p = false because ¬p map-reflects : (A → B) → (¬ A → ¬ B) → ∀ {d} → Reflects A d → Reflects B d map-reflects {A = A} {B = B} to fro {d = d} = bool {P = λ d → Reflects A d → Reflects B d} fro to d Reflects-T : ∀ b → Reflects (T b) b Reflects-T = bool (λ z → z) _ map-dec : (A → B) → (¬ A → ¬ B) → Dec A → Dec B map-dec to fro dec .does = dec .does map-dec to fro dec .why = map-reflects to fro (dec .why) iff-dec : (A ↔ B) → Dec A → Dec B iff-dec (to iff fro) = map-dec to (λ ¬y x → ¬y (fro x)) infixr 1 dec dec : (A → B) → (¬ A → B) → Dec A → B dec {A = A} {B = B} on-yes on-no d = bool {P = λ d → Reflects A d → B} on-no on-yes (d .does) (d .why) syntax dec (λ yv → ye) (λ nv → ne) dc = ∣ dc ∣yes yv ⇒ ye ∣no nv ⇒ ne T? : (b : Bool) → Dec (T b) T? b .does = b T? false .why () T? true .why = _ dec-bool : (b : Bool) → (T b → A) → (A → T b) → Dec A dec-bool b to fro .does = b dec-bool false to fro .why = fro dec-bool true to fro .why = to _ open import Path it-does : (d : Dec A) → A → does d ≡ true it-does (yes _) _ = refl it-does (no ¬A) A = ⊥-elim (¬A A) it-doesn't : (d : Dec A) → ¬ A → does d ≡ false it-doesn't (no _) _ = refl it-doesn't (yes A) ¬A = ⊥-elim (¬A A) both-do : (x : Dec A) (y : Dec B) → (A ↔ B) → does x ≡ does y both-do x (no ¬B) A↔B = it-doesn't x λ A → ¬B (A↔B .fun A) both-do x (yes B) A↔B = it-does x (A↔B .inv B)