{-# OPTIONS --without-K --safe #-}
module Relation.Nullary.Negation where
open import Category.Monad
open import Data.Bool.Base using (Bool; false; true; if_then_else_)
open import Data.Empty
open import Data.Product as Prod
open import Data.Sum as Sum using (_⊎_; inj₁; inj₂; [_,_])
open import Function
open import Level
open import Relation.Nullary
open import Relation.Unary
private
variable
a p q r w : Level
A : Set a
P : Set p
Q : Set q
R : Set r
Whatever : Set w
contradiction : P → ¬ P → Whatever
contradiction p ¬p = ⊥-elim (¬p p)
contraposition : (P → Q) → ¬ Q → ¬ P
contraposition f ¬q p = contradiction (f p) ¬q
fp
private
note : (P → ¬ Q) → Q → ¬ P
note = flip
¬? : Dec P → Dec (¬ P)
¬? (yes p) = no (λ ¬p → ¬p p)
¬? (no ¬p) = yes ¬p
module _ {P : Pred A p} where
∃⟶¬∀¬ : ∃ P → ¬ (∀ x → ¬ P x)
∃⟶¬∀¬ = flip uncurry
∀⟶¬∃¬ : (∀ x → P x) → ¬ ∃ λ x → ¬ P x
∀⟶¬∃¬ ∀xPx (x , ¬Px) = ¬Px (∀xPx x)
¬∃⟶∀¬ : ¬ ∃ (λ x → P x) → ∀ x → ¬ P x
¬∃⟶∀¬ = curry
∀¬⟶¬∃ : (∀ x → ¬ P x) → ¬ ∃ (λ x → P x)
∀¬⟶¬∃ = uncurry
∃¬⟶¬∀ : ∃ (λ x → ¬ P x) → ¬ (∀ x → P x)
∃¬⟶¬∀ = flip ∀⟶¬∃¬
¬¬-map : (P → Q) → ¬ ¬ P → ¬ ¬ Q
¬¬-map f = contraposition (contraposition f)
Stable : Set p → Set p
Stable P = ¬ ¬ P → P
stable : ¬ ¬ Stable P
stable ¬[¬¬p→p] = ¬[¬¬p→p] (λ ¬¬p → ⊥-elim (¬¬p (¬[¬¬p→p] ∘ const)))
negated-stable : Stable (¬ P)
negated-stable ¬¬¬P P = ¬¬¬P (λ ¬P → ¬P P)
decidable-stable : Dec P → Stable P
decidable-stable (yes p) ¬¬p = p
decidable-stable (no ¬p) ¬¬p = ⊥-elim (¬¬p ¬p)
¬-drop-Dec : Dec (¬ ¬ P) → Dec (¬ P)
¬-drop-Dec (yes ¬¬p) = no ¬¬p
¬-drop-Dec (no ¬¬¬p) = yes (negated-stable ¬¬¬p)
¬¬-Monad : RawMonad (λ (P : Set p) → ¬ ¬ P)
¬¬-Monad = record
{ return = contradiction
; _>>=_ = λ x f → negated-stable (¬¬-map f x)
}
¬¬-push : ∀ {P : Set p} {Q : P → Set q} →
¬ ¬ ((x : P) → Q x) → (x : P) → ¬ ¬ Q x
¬¬-push ¬¬P⟶Q P ¬Q = ¬¬P⟶Q (λ P⟶Q → ¬Q (P⟶Q P))
excluded-middle : ¬ ¬ Dec P
excluded-middle ¬h = ¬h (no (λ p → ¬h (yes p)))
call/cc : ((P → Whatever) → ¬ ¬ P) → ¬ ¬ P
call/cc hyp ¬p = hyp (λ p → ⊥-elim (¬p p)) ¬p
independence-of-premise : ∀ {P : Set p} {Q : Set q} {R : Q → Set r} →
Q → (P → Σ Q R) → ¬ ¬ (Σ[ x ∈ Q ] (P → R x))
independence-of-premise {P = P} q f = ¬¬-map helper excluded-middle
where
helper : Dec P → _
helper (yes p) = Prod.map id const (f p)
helper (no ¬p) = (q , ⊥-elim ∘′ ¬p)
independence-of-premise-⊎ : (P → Q ⊎ R) → ¬ ¬ ((P → Q) ⊎ (P → R))
independence-of-premise-⊎ {P = P} f = ¬¬-map helper excluded-middle
where
helper : Dec P → _
helper (yes p) = Sum.map const const (f p)
helper (no ¬p) = inj₁ (⊥-elim ∘′ ¬p)
private
corollary : {P : Set p} {Q R : Set q} →
(P → Q ⊎ R) → ¬ ¬ ((P → Q) ⊎ (P → R))
corollary {P = P} {Q} {R} f =
¬¬-map helper (independence-of-premise
true ([ _,_ true , _,_ false ] ∘′ f))
where
helper : ∃ (λ b → P → if b then Q else R) → (P → Q) ⊎ (P → R)
helper (true , f) = inj₁ f
helper (false , f) = inj₂ f
Excluded-Middle : (ℓ : Level) → Set (suc ℓ)
Excluded-Middle p = {P : Set p} → Dec P
{-# WARNING_ON_USAGE Excluded-Middle
"Warning: Excluded-Middle was deprecated in v1.0.
Please use ExcludedMiddle from `Axiom.ExcludedMiddle` instead."
#-}
Double-Negation-Elimination : (ℓ : Level) → Set (suc ℓ)
Double-Negation-Elimination p = {P : Set p} → Stable P
{-# WARNING_ON_USAGE Double-Negation-Elimination
"Warning: Double-Negation-Elimination was deprecated in v1.0.
Please use DoubleNegationElimination from `Axiom.DoubleNegationElimination` instead."
#-}