\begin{code}
{-# OPTIONS --safe #-}

module Data.Sigma where

open import Agda.Builtin.Sigma
  using (Σ; fst; snd)
  renaming (_,_ to infixr 3 _,_)
  public
open import Level
open import Path

infixr 3 ∃-syntax
∃-syntax :  {a b} {A : Type a} (B : A  Type b)  Type (a ℓ⊔ b)
∃-syntax {A = A} = Σ A

syntax ∃-syntax  x  e) =  x × e

infixr 3 Σ⦂-syntax
Σ⦂-syntax : (A : Type a) (B : A  Type b)  Type (a ℓ⊔ b)
Σ⦂-syntax = Σ

syntax Σ⦂-syntax t  x  e) = Σ[ x  t ] × e

infixr 3 _×_
_×_ : (A : Type a)  (B : Type b)  Type (a ℓ⊔ b)
A × B = Σ A λ _  B

∃! :  {a b} {A : Type a} (B : A  Type b)  Type (a ℓ⊔ b)
∃! B =  x × B x × (∀ y  B y  x  y)

infixr 3 ∃!-syntax
∃!-syntax :  {a b} {A : Type a} (B : A  Type b)  Type (a ℓ⊔ b)
∃!-syntax = ∃!

syntax ∃!-syntax  x  e) =  ! x × e

curry :  {A : Type a} {B : A  Type b} {C : Σ A B  Type c} 
          ((p : Σ A B)  C p) 
          ((x : A)  (y : B x)  C (x , y))
curry f x y = f (x , y)
{-# INLINE curry #-}

uncurry :  {A : Type a} {B : A  Type b} {C : Σ A B  Type c} 
            ((x : A)  (y : B x)  C (x , y)) 
            ((p : Σ A B)  C p)
uncurry f (x , y) = f x y
{-# INLINE uncurry #-}

map-Σ :  {p q} {P : A  Type p} {Q : B  Type q} 
        (f : A  B)  (∀ {x}  P x  Q (f x)) 
        Σ A P  Σ B Q
map-Σ f g (x , y) = f x , g y
{-# INLINE map-Σ #-}

map₁ : (A  B)  A × C  B × C
map₁ f = map-Σ f  x  x)
{-# INLINE map₁ #-}

map₁-Σ :  {A : Type a} {B : Type b} {C : B  Type b}
        (f : A  B)  Σ A  x  C (f x))  Σ B C
map₁-Σ f (x , y) = f x , y
{-# INLINE map₁-Σ #-}

map₂ :  {A : Type a} {B : A  Type b} {C : A  Type c} 
        (∀ {x}  B x  C x)  Σ A B  Σ A C
map₂ f = map-Σ  x  x) f
{-# INLINE map₂ #-}

map₂′ : (B  C)  A × B  A × C
map₂′ f = map-Σ  x  x) f
{-# INLINE map₂′ #-}
\end{code}
%<*swap-sig>
\begin{code}
swap : A × B  B × A
\end{code}
%</swap-sig>
\begin{code}
swap (x , y) = y , x

×-assoc : (A × B) × C  A × (B × C)
×-assoc ((x , y) , z) = x , y , z

infixr 8.5 _▵_ 
_▵_ : (A  B)  (A  C)  A  B × C
(f  g) x = f x , g x
\end{code}