{-
This file contains:
- Definitions equivalences
- Glue types
-}
{-# OPTIONS --cubical --safe #-}
module Cubical.Core.Glue where
open import Cubical.Core.Primitives
open import Agda.Builtin.Cubical.Glue public
using ( isEquiv -- ∀ {ℓ ℓ'} {A : Set ℓ} {B : Set ℓ'} (f : A → B) → Set (ℓ ⊔ ℓ')
; equiv-proof -- ∀ (y : B) → isContr (fiber f y)
; _≃_ -- ∀ {ℓ ℓ'} (A : Set ℓ) (B : Set ℓ') → Set (ℓ ⊔ ℓ')
; equivFun -- ∀ {ℓ ℓ'} {A : Set ℓ} {B : Set ℓ'} → A ≃ B → A → B
; equivProof -- ∀ {ℓ ℓ'} (T : Set ℓ) (A : Set ℓ') (w : T ≃ A) (a : A) φ →
-- Partial φ (fiber (equivFun w) a) → fiber (equivFun w) a
; primGlue -- ∀ {ℓ ℓ'} (A : Set ℓ) {φ : I} (T : Partial φ (Set ℓ'))
-- → (e : PartialP φ (λ o → T o ≃ A)) → Set ℓ'
; prim^unglue -- ∀ {ℓ ℓ'} {A : Set ℓ} {φ : I} {T : Partial φ (Set ℓ')}
-- → {e : PartialP φ (λ o → T o ≃ A)} → primGlue A T e → A
-- The ∀ operation on I. This is commented out as it is not currently used for anything
-- ; primFaceForall -- (I → I) → I
)
renaming ( prim^glue to glue -- ∀ {ℓ ℓ'} {A : Set ℓ} {φ : I} {T : Partial φ (Set ℓ')}
-- → {e : PartialP φ (λ o → T o ≃ A)}
-- → PartialP φ T → A → primGlue A T e
; pathToEquiv to lineToEquiv -- ∀ {ℓ : I → Level} (P : (i : I) → Set (ℓ i)) → P i0 ≃ P i1
)
private
variable
ℓ ℓ' : Level
-- Uncurry Glue to make it more pleasant to use
Glue : (A : Set ℓ) {φ : I}
→ (Te : Partial φ (Σ[ T ∈ Set ℓ' ] T ≃ A))
→ Set ℓ'
Glue A Te = primGlue A (λ x → Te x .fst) (λ x → Te x .snd)
-- Make the φ argument of prim^unglue explicit
unglue : {A : Set ℓ} (φ : I) {T : Partial φ (Set ℓ')}
{e : PartialP φ (λ o → T o ≃ A)} → primGlue A T e → A
unglue φ = prim^unglue {φ = φ}