{-
This file contains:
- Definition of set truncations
-}
{-# OPTIONS --cubical --safe #-}
module Cubical.HITs.SetTruncation.Base where
open import Cubical.Core.Primitives
-- set truncation as a higher inductive type:
data ∥_∥₀ {ℓ} (A : Set ℓ) : Set ℓ where
∣_∣₀ : A → ∥ A ∥₀
squash₀ : ∀ (x y : ∥ A ∥₀) (p q : x ≡ y) → p ≡ q