{-# OPTIONS --cubical --safe --postfix-projections #-}

module Data.Fin.Properties where

open import Prelude
open import Data.Fin.Base
import Data.Nat.Properties as 
open import Data.Nat.Properties using (+-comm)
open import Data.Nat
open import Function.Injective
open import Agda.Builtin.Nat renaming (_<_ to _<ᵇ_)

private
  variable
    n m : 

suc-natfin : Σ[ m   ] × (m ℕ.< n)  Σ[ m   ] × (m ℕ.< suc n)
suc-natfin (m , p) = suc m , p

Fin-to-Nat-lt : Fin n  Σ[ m   ] × (m ℕ.< n)
Fin-to-Nat-lt {n = suc n} f0 = zero , tt
Fin-to-Nat-lt {n = suc n} (fs x) = suc-natfin (Fin-to-Nat-lt x)

Fin-from-Nat-lt :  m  m ℕ.< n  Fin n
Fin-from-Nat-lt {n = suc n} zero p = f0
Fin-from-Nat-lt {n = suc n} (suc m) p = fs (Fin-from-Nat-lt m p)

Fin-Nat-lt-rightInv :  m  (p : m ℕ.< n)  Fin-to-Nat-lt {n = n} (Fin-from-Nat-lt m p)  (m , p)
Fin-Nat-lt-rightInv {n = suc n} zero p = refl
Fin-Nat-lt-rightInv {n = suc n} (suc m) p = cong (suc-natfin {n = n}) (Fin-Nat-lt-rightInv {n = n} m p)

Fin-Nat-lt-leftInv : (x : Fin n)  uncurry Fin-from-Nat-lt (Fin-to-Nat-lt x)  x
Fin-Nat-lt-leftInv {n = suc n} f0 = refl
Fin-Nat-lt-leftInv {n = suc n} (fs x) = cong fs (Fin-Nat-lt-leftInv x)

Fin-Nat-lt : Fin n  Σ[ m   ] × (m ℕ.< n)
Fin-Nat-lt .fun = Fin-to-Nat-lt
Fin-Nat-lt .inv = uncurry Fin-from-Nat-lt
Fin-Nat-lt .rightInv = uncurry Fin-Nat-lt-rightInv
Fin-Nat-lt .leftInv = Fin-Nat-lt-leftInv

FinToℕ : Fin n  
FinToℕ {n = suc n} f0     = zero
FinToℕ {n = suc n} (fs x)  = suc (FinToℕ x)

FinToℕ-injective :  {k} {m n : Fin k}  FinToℕ m  FinToℕ n  m  n
FinToℕ-injective {suc k} {f0}  {f0}  _ = refl
FinToℕ-injective {suc k} {f0}  {fs x} p = ⊥-elim (ℕ.znots p)
FinToℕ-injective {suc k} {fs m} {f0}  p = ⊥-elim (ℕ.snotz p)
FinToℕ-injective {suc k} {fs m} {fs x} p = cong fs (FinToℕ-injective (ℕ.injSuc p))

pred : Fin (suc n)  Fin (suc (ℕ.pred n))
pred f0 = f0
pred {n = suc n} (fs m) = m

discreteFin :  {k}  Discrete (Fin k)
discreteFin {k = suc _} f0 f0 = yes refl
discreteFin {k = suc _} f0 (fs fk) = no (ℕ.znots  cong FinToℕ)
discreteFin {k = suc _} (fs fj) f0 = no (ℕ.snotz  cong FinToℕ)
discreteFin {k = suc _} (fs fj) (fs fk) =
  iff-dec (cong fs iff cong  { f0  fk ; (fs x)  x})) (discreteFin fj fk)

isSetFin : isSet (Fin n)
isSetFin = Discrete→isSet discreteFin

FinFromℕ : (n m : )  T (n <ᵇ m)  Fin m
FinFromℕ zero (suc m) p = f0
FinFromℕ (suc n) (suc m) p = fs (FinFromℕ n m p)

_<ᴮ_ : Fin n  Fin m  Bool
n <ᴮ m = FinToℕ n <ᵇ FinToℕ m

_<_ : Fin n  Fin m  Type
n < m = T (n <ᴮ m)