{-# OPTIONS --cubical --safe #-} module Relation.Nullary.Decidable.Properties where open import Relation.Nullary.Decidable open import Level open import Relation.Nullary.Stable open import Data.Empty open import HLevels open import Data.Empty.Properties using (isProp¬) open import Data.Unit open import Data.Empty Dec→Stable : ∀ {ℓ} (A : Type ℓ) → Dec A → Stable A Dec→Stable A (yes x) = λ _ → x Dec→Stable A (no x) = λ f → ⊥-elim (f x) isPropDec : (Aprop : isProp A) → isProp (Dec A) isPropDec Aprop (yes a) (yes a') i = yes (Aprop a a' i) isPropDec Aprop (yes a) (no ¬a) = ⊥-elim (¬a a) isPropDec Aprop (no ¬a) (yes a) = ⊥-elim (¬a a) isPropDec {A = A} Aprop (no ¬a) (no ¬a') i = no (isProp¬ A ¬a ¬a' i) True : Dec A → Type True (yes _) = ⊤ True (no _) = ⊥ toWitness : {x : Dec A} → True x → A toWitness {x = yes p} _ = p open import Path open import Data.Bool.Base from-reflects : ∀ b → (d : Dec A) → Reflects A b → does d ≡ b from-reflects false (no y) r = refl from-reflects false (yes y) r = ⊥-elim (r y) from-reflects true (no y) r = ⊥-elim (y r) from-reflects true (yes y) r = refl