{-# OPTIONS --safe #-} module Decidable where open import Level open import Data.Bool open import Path open import Data.Unit open import Data.Empty open import Data.Sigma Reflects : Type a → Bool → Type a Reflects A = bool′ (¬ A) A record Dec {a} (A : Type a) : Type a where constructor _because_ field does : Bool why : Reflects A does open Dec public pattern yes p = true because p pattern no ¬p = false because ¬p map-reflects : (A → B) → (¬ A → ¬ B) → ∀ {d} → Reflects A d → Reflects B d map-reflects {A = A} {B = B} to fro {d = d} = bool {P = λ d → Reflects A d → Reflects B d} fro to d Reflects-T : ∀ b → Reflects (T b) b Reflects-T = bool (λ z → z) _ map-dec : (A → B) → (¬ A → ¬ B) → Dec A → Dec B map-dec to fro dec .does = dec .does map-dec to fro dec .why = map-reflects to fro (dec .why) iff-dec : (A → B) → (B → A) → Dec A → Dec B iff-dec to fro = map-dec to (λ ¬A B → ¬A (fro B)) infixr 1 dec dec : (A → B) → (¬ A → B) → Dec A → B dec {A = A} {B = B} on-yes on-no d = bool {P = λ d → Reflects A d → B} on-no on-yes (d .does) (d .why) syntax dec (λ yv → ye) (λ nv → ne) dc = ∣ dc ∣yes yv ⇒ ye ∣no nv ⇒ ne open import Data.Maybe does? : Dec A → Maybe A does? = dec just (λ _ → nothing) T? : (b : Bool) → Dec (T b) T? b .does = b T? false .why () T? true .why = _ dec-bool : (b : Bool) → (T b → A) → (A → T b) → Dec A dec-bool b to fro .does = b dec-bool false to fro .why = fro dec-bool true to fro .why = to _ open import Path it-does : (d : Dec A) → A → does d ≡ true it-does (yes _) _ = refl it-does (no ¬A) A = absurd (¬A A) it-doesn't : (d : Dec A) → ¬ A → does d ≡ false it-doesn't (no _) _ = refl it-doesn't (yes A) ¬A = absurd (¬A A) both-do : (x : Dec A) (y : Dec B) → ((A → B) × (B → A)) → does x ≡ does y both-do x (no ¬B) A↔B = it-doesn't x λ A → ¬B (A↔B .fst A) both-do x (yes B) A↔B = it-does x (A↔B .snd B) from-does : (x : Dec A) → T (does x) → A from-does (yes x) p = x from-doesn't : (x : Dec A) → T (neg (does x)) → ¬ A from-doesn't (no x) p = x Stable : Type a → Type a Stable A = ¬ ¬ A → A open import HLevels open import Data.Empty.Properties open import Cubical.Foundations.Everything using (hcomp; _∧_; i0; i1) Stable≡→isSet : ∀ {ℓ} {A : Type ℓ} → (st : ∀ (a b : A) → Stable (a ≡ b)) → isSet A Stable≡→isSet {A = A} st a b p q j i = let f : (x : A) → a ≡ x → a ≡ x f x p = st a x (λ h → h p) fIsConst : (x : A) → (p q : a ≡ x) → f x p ≡ f x q fIsConst = λ x p q i → st a x (isProp¬ (λ h → h p) (λ h → h q) i) rem : (p : a ≡ b) → PathP (λ i → a ≡ p i) (f a refl) (f b p) rem p j = f (p j) (λ i → p (i ∧ j)) in hcomp (λ k → λ { (i = i0) → f a refl k ; (i = i1) → fIsConst b p q j k ; (j = i0) → rem p i k ; (j = i1) → rem q i k }) a Dec→Stable : (A : Type a) → Dec A → Stable A Dec→Stable A (yes x) = λ _ → x Dec→Stable A (no x) = λ f → absurd (f x) isPropDec : (Aprop : isProp A) → isProp (Dec A) isPropDec Aprop (yes a) (yes a') i = yes (Aprop a a' i) isPropDec Aprop (yes a) (no ¬a) = absurd (¬a a) isPropDec Aprop (no ¬a) (yes a) = absurd (¬a a) isPropDec {A = A} Aprop (no ¬a) (no ¬a') i = no (isProp¬ ¬a ¬a' i) not : Dec A → Dec (¬ A) not x .does = neg (does x) not (no ¬A) .why = ¬A not (yes A) .why ¬A = ¬A A _and_ : Dec A → Dec B → Dec (A × B) (x and y) .does = does x && does y (no ¬A and _) .why (A , _) = ¬A A (yes A and no ¬B) .why (_ , B) = ¬B B (yes A and yes B) .why = A , B open import Data.Sum.Definition _or_ : Dec A → Dec B → Dec (A ⊎ B) (x or y) .does = does x || does y (yes A or y) .why = inl A (no ¬A or yes B) .why = inr B (no ¬A or no ¬B) .why (inl A) = ¬A A (no ¬A or no ¬B) .why (inr B) = ¬B B open import HITs.PropositionalTruncation ∥refute∥ : Dec A → ∥ A ∥ → A ∥refute∥ (no ¬A) ∣A∣ = absurd (∥rec∥ isProp⊥ ¬A ∣A∣) ∥refute∥ (yes A) _ = A