{-# OPTIONS --cubical --safe #-}

module Data.Fin.Injective where

open import Prelude

open import Data.Fin.Base
open import Data.Fin.Properties using (discreteFin)


open import Data.Nat
open import Data.Nat.Properties using (+-comm)
open import Data.Nat.Compare

open import Function.Injective

private
  variable n m : 

infix 4 _≢ᶠ_ _≡ᶠ_
_≢ᶠ_ _≡ᶠ_ : Fin n  Fin n  Type _
n ≢ᶠ m = T (not (discreteFin n m .does))
n ≡ᶠ m = T (discreteFin n m .does)

_F↣_ :     Type
n F↣ m = Σ[ f  (Fin n  Fin m) ] ×  {x y}  x ≢ᶠ y  f x ≢ᶠ f y

shift : (x y : Fin (suc n))  x ≢ᶠ y  Fin n
shift          f0     (fs y)  x≢y = y
shift {suc _}  (fs x)  f0     x≢y = f0
shift {suc _}  (fs x)  (fs y)  x≢y = fs (shift x y x≢y)

shift-inj :  (x y z : Fin (suc n)) x≢y x≢z  y ≢ᶠ z  shift x y x≢y ≢ᶠ shift x z x≢z
shift-inj          f0     (fs y)  (fs z)  x≢y x≢z x+y≢x+z = x+y≢x+z
shift-inj {suc _}  (fs x)  f0     (fs z)  x≢y x≢z x+y≢x+z = tt
shift-inj {suc _}  (fs x)  (fs y)  f0     x≢y x≢z x+y≢x+z = tt
shift-inj {suc _}  (fs x)  (fs y)  (fs z)  x≢y x≢z x+y≢x+z = shift-inj x y z x≢y x≢z x+y≢x+z

shrink : suc n F↣ suc m  n F↣ m
shrink (f , inj) .fst  x  = shift (f f0) (f (fs x)) (inj tt)
shrink (f , inj) .snd  p  = shift-inj (f f0) (f (fs _)) (f (fs _)) (inj tt) (inj tt) (inj p)

¬plus-inj :  n m  ¬ (suc (n + m) F↣ m)
¬plus-inj zero     zero     (f , _)  = f f0
¬plus-inj zero     (suc m)  inj      = ¬plus-inj zero m (shrink inj)
¬plus-inj (suc n)  m        (f , p)  = ¬plus-inj n m (f  fs , p)

toFin-inj : (Fin n  Fin m)  n F↣ m
toFin-inj f .fst = f .fst
toFin-inj (f , inj) .snd {x} {y} x≢ᶠy with discreteFin x y | discreteFin (f x) (f y)
... | no ¬p  | yes p  = ¬p (inj _ _ p)
... | no _   | no _   = tt

n≢sn+m :  n m  Fin n  Fin (suc (n + m))
n≢sn+m n m n≡m =
  ¬plus-inj m n
    (toFin-inj
      (subst
        (_↣ Fin n)
        (n≡m ; cong (Fin  suc) (+-comm n m))
        refl-↣))

Fin-inj : Injective Fin
Fin-inj n m eq with compare n m | comparing n m
... | equal      | p = p
... | less     k | p = ⊥-elim (n≢sn+m n k (eq ; cong Fin (sym p)))
... | greater  k | p = ⊥-elim (n≢sn+m m k (sym eq ; cong Fin (sym p)))