{-# OPTIONS --without-K --safe #-}

open import Polynomial.Parameters

module Polynomial.Homomorphism.Negation
  {r₁ r₂ r₃}
  (homo : Homomorphism r₁ r₂ r₃)
  where

open import Data.Product          using (_,_)
open import Data.Vec              using (Vec)
open import Induction.WellFounded using (Acc; acc)
open import Induction.Nat         using (<′-wellFounded)

open import Function

open Homomorphism homo
open import Polynomial.Homomorphism.Lemmas homo
open import Polynomial.Reasoning ring
open import Polynomial.NormalForm homo

⊟-step-hom :  {n} (a : Acc _<′_ n)  (xs : Poly n)   ρ   ⊟-step a xs  ρ  - ( xs  ρ)
⊟-step-hom (acc _ ) (Κ x  Π i≤n) ρ = -‿homo x
⊟-step-hom (acc wf) (Σ xs Π i≤n) ρ′ =
  let (ρ , ρs) = drop-1 i≤n ρ′
      neg-zero =
        begin
          0#
        ≈⟨ sym (zeroʳ _) 
          - 0# * 0#
        ≈⟨ -‿*-distribˡ 0# 0# 
          - (0# * 0#)
        ≈⟨ -‿cong (zeroˡ 0#) 
          - 0#
        
  in
  begin
     poly-map (⊟-step (wf _ i≤n)) xs Π↓ i≤n  ρ′
  ≈⟨ Π↓-hom (poly-map (⊟-step (wf _ i≤n)) xs) i≤n ρ′ 
    Σ?⟦ poly-map (⊟-step  (wf _ i≤n)) xs  (ρ , ρs)
  ≈⟨ poly-mapR ρ ρs (⊟-step (wf _ i≤n)) -_ (-‿cong)  x y  *-comm x (- y)  trans  -‿*-distribˡ y x  trans  -‿cong (*-comm _ _))  x y  sym (-‿+-comm x y)) (flip (⊟-step-hom (wf _ i≤n)) ρs) (sym neg-zero ) xs 
    - Σ⟦ xs  (ρ , ρs)
  

⊟-hom :  {n}
       (xs : Poly n)
       (Ρ : Vec Carrier n)
         xs  Ρ  -  xs  Ρ
⊟-hom = ⊟-step-hom (<′-wellFounded _)